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A phase-field model for elastically anisotropic polycrystalline binary

solid solutions

Tae Wook Heo*, Saswata Bhattacharyyay and Long-Qing Chen

Department of Materials Science and Engineering, The Pennsylvania State University,
University Park, PA 16802, USA

(Received 30 April 2012; final version received 23 October 2012)

A phase-field model for modeling the diffusional processes in an elastically
anisotropic polycrystalline binary solid solution is described. The elastic
interactions due to coherency elastic strain are incorporated by solving the
mechanical equilibrium equation using an iterative-perturbation scheme
taking into account elastic modulus inhomogeneity stemming from
different grain orientations. We studied the precipitate interactions
among precipitates across a grain boundary and grain boundary segrega-
tion–precipitate interactions. It was shown that the local pressure field from
one coherent precipitate influences the shape of precipitates in other grains.
The local pressure distribution due to primary coherent precipitates near
the grain boundary leads to inhomogeneous solute distribution along the
grain boundary, resulting in non-uniform distribution of secondary nuclei
at the grain boundary.

Keywords: elasticity; polycrystalline; solid solutions; diffusion; phase-field
model

1. Introduction

Phase transformations of solid solutions involve a complicated coupling among a
number of different diffusional processes such as solute segregation/depletion,
precipitate nucleation, growth, and coarsening. The thermodynamics and kinetics of
these processes are often influenced by the elastic interactions in a microstructure [1].
Common internal defects such as dislocations, grain boundaries, and coherent
inclusions are sources of elastic stresses in the solid solutions. For example, for
systems with coherent precipitates, elastic stresses arise naturally due to the lattice
parameter mismatch between the precipitate and the matrix [2–5]. Since most
materials in engineering applications are polycrystalline solid solutions, computa-
tional approach for predicting phase transformations in polycrystals would be useful
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for designing microstructures of engineering materials. However, computational

modeling of diffusional processes in a polycrystalline solid solution is more

challenging than those in a uniform single crystal. There are two main challenges.

First, the solute-grain boundary interactions should be considered. The presence of

grain boundaries leads to solute segregation or depletion due to chemical and/or

elastic interaction between solute atoms and defects. To describe the solute-grain

boundary interactions, several phase-field models have been proposed. Fan et al.

employed the phenomenological model to induce the grain boundary segregation [6].

Cha et al. described the grain boundary as a distinguishable phase and incorporated

the segregation potential within the grain boundary regime [7]. More recently, a

phase-field model was proposed by Grönhagen and Ågren for modeling grain

boundary segregation as well as solute drag effects [8]. The model has been

successfully applied to propose the abnormal grain growth mechanism [9], simulate

the solute-moving grain boundary in the strongly segregating system [10], and model

the strain energy effects on grain boundary segregation and solute drag effects [11].

The second challenge is the elastic inhomogeneity of a polycrystalline solid solution.

A number of approaches have been proposed to model and compute the

inhomogeneous elasticity in polycrystals. Wang et al. developed a method based

on the calculation of equivalent eigenstrain [12]. Tonks et al. employed a phase-field

model to investigate the grain boundary motion taking into account the inhomo-

geneous elasticity in a bicrystal [13] where the elastic solution was computed by the

numerical technique in [12]. Kim et al. incorporated elastic inhomogeneity to a

phase-field grain growth model and studied grain growth behavior and texture

evolution under an external load [14,15]. We recently extended an iterative-

perturbation technique using the Fourier spectral method [16,17] to model the effects

of elastic inhomogeneity in polycrystals [18,19].
Phase transformations and microstructure evolution in polycrystals have

previously been modeled using the phase-field approach [20–25]. For example, Jin

et al. [26], Artemev et al. [27] and Wang et al. [28] investigated the formation and

switching of martensitic transformations in polycrystals. Choudhury et al. analyzed

the evolution of ferroelectric domains in polycrystalline oxides [29,30]. The existing

works mainly focused on the structural transformation and assumed the homoge-

neous isotropic elastic properties. However, the diffusional processes in elastically

anisotropic polycrystalline solid solutions have not been extensively studied

using phase-field simulations even though there have been many efforts in phase-

field modeling of precipitate reactions in single crystalline solid solutions, e.g. Ni

alloys [31–33], Al alloys [34–36], etc., and a few phase-field simulations of grain

boundary effects on spinodal decomposition without consideration of elastic

properties [37,38].
The main objective of the present work is to extend and generalize the phase-field

models in [11,39] for describing the diffusional processes in elastically inhomoge-

neous polycrystalline solid solutions. We integrate the elasticity model for an

elastically inhomogeneous polycrystalline system with phase-field equations describ-

ing diffusional processes. A binary solid solution is considered for simplicity. The

elastic interactions associated with segregation and precipitations near grain

boundaries are discussed.
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2. Phase-field model

Diffusional processes in a polycrystalline solid solution involve interactions between
inhomogeneous distribution of solute composition and grain structures. Thus, two

types of field variables are required to describe the thermodynamics and kinetic
processes of a polycrystalline binary solid solution. One is a conserved field variable

Xð~rÞ for the composition of solute, and the other is a non-conserved field variable

�gð~rÞ for the crystallographic orientation of grains. In the diffuse-interface descrip-
tion [40], the total free energy F of an inhomogeneous system is described by a

volume integral as a functional of a set of continuous field variables. We adopted
and extended a phase-field model of Grönhagen and Ågren [8] which is validated to

be quantitatively correct by Kim and Park [9] for describing the solute–grain

boundary interactions. We incorporated the elastic strain interactions of solute
atoms in the presence of grain boundaries in an anisotropic binary solid solution.

The functional form of the total free energy F of the solid solution is given by the
following volume integral [20]:

F ¼

Z
V

finc þ !gð�1, �2, . . . , �gÞ þ
�c
2
ðrXÞ2 þ

�o
2

X
g

ðr�gÞ
2
þ ecoh

( )
dV, ð1Þ

where finc is the incoherent local free energy density of a solid solution, g is a multi-

well free energy density function describing the grain structure, ! is the potential

height of g, �c and �o are gradient energy coefficients of composition Xð~rÞ and grain
order parameters �gð~rÞ, respectively, and ecoh is the local coherency elastic strain

energy density arising from a compositional inhomogeneity.

2.1. Thermodynamic energy model

The incoherent local free energy contains both the chemical and the elastic strain

energy of a homogeneous solid solution. In order to explore the origin of both
contributions and develop the incoherent free energy density in the presence of grain

boundaries, let us start with the Gibbs free energy of a solid solution. The free energy

density of the solid solution is represented by the linear combination of the chemical
potentials, i.e. the partial molar Gibbs free energy, of all the species. In the case of a

binary solid solution, the free energy density is given by

finc ¼ �Xþ �hð1� XÞ, ð2Þ

where � is the chemical potential of solutes and �h is the chemical potential of host

atoms in the solid solution. To explain the free energy density of the binary system, a
regular solution model is considered as the following function:

finc ¼ �o þ RT lnXþ�ð1� XÞ2
� �

Xþ �o
h þ RT lnð1� XÞ þ�X2

� �
ð1� XÞ, ð3Þ

where �o is the chemical potential of solute atoms at standard state, �o
h is the

chemical potential of host atoms at standard state, R is the gas constant, T is

the temperature, and � is the regular solution parameter for representing the
interactions among atoms. Following Cahn [41], the interaction potential E is

31470 T.W. Heo et al.
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additionally incorporated to represent pure chemical interaction between a grain

boundary and solute atoms, and Equation (3) becomes

finc ¼ �o þ RT lnXþ�ð1� XÞ2 þ E
� �

Xþ �o
h þ RT lnð1� XÞ þ�X2

� �
ð1� XÞ: ð4Þ

In the present model, we specify the pure chemical interaction potential E

between grain boundary and solutes as ½�m!gð�1, �2, . . . , �gÞ� where m is a parameter

determining the interaction strength between solute atoms and a grain boundary.

Plugging the interaction potential in Equation (4) and rearranging the equation, we

have the incoherent free energy density in the presence of grain boundaries as the

following:

finc¼�
oXþ�o

hð1�XÞþRT½X lnXþð1�XÞ lnð1�XÞ��m!gXþ�Xð1�XÞ: ð5Þ

Generally, the regular solution parameter contains all the contributions

associated with the non-ideality of the solid solution. Ignoring all other contribu-

tions, let us focus on pure chemical and elastic interactions due to the atomic size

difference (or size mismatch) between solute atoms and host atoms. Hence, the

elastic strain contribution can be separated from the regular solution parameter

(� ¼ �chem þ�hom
elast). The elastic strain energy density (ehom) of a homogeneous solid

solution with composition X [2] is given by:

ehom ¼
1

2
Cijkl"

m
ij "

m
kl � hLð~nÞi~n

h i
Xð1� XÞ, ð6Þ

where Cijkl is the elastic modulus, "mij is the misfit strain tensor, and hLð~nÞi~n is the

average of Lð~nÞ over all the directions of ~n with Lð~nÞ ¼ ni�
0
ij�jk�

0
klnl, �

0
ij ¼ Cijkl"

m
kl,

��1jk ¼ Cjilkninl, and ni is the unit wave vector in Fourier space. The details of

calculation of hLð~nÞi~n are shown in the Appendix. Therefore, the incoherent free

energy density is represented by the following expression as discussed in [11]:

finc ¼ �
oXþ �o

hð1� XÞ þ RT½X lnXþ ð1� XÞ lnð1� XÞ� �m!gX

þ�chemXð1� XÞ þ
1

2
Cijkl"

m
ij "

m
kl � hLð~nÞi~n

h i
Xð1� XÞ,

ð7Þ

where �chem is the regular solution parameter associated with the pure chemical

contribution, i.e. regular solution parameter of a hypothetical solid solution in which

all the atoms have the same size (This representation is similar to Cahn’s in [42]). The

incoherent free energy is expressed by the summation of purely chemical part and

elastic strain energy of a homogeneous solid solution itself:

finc ¼ ½ fchem �m!gX� þ ehom, ð8Þ

where fchem ¼ �
oXþ �o

hð1� XÞ þ RT½X lnXþ ð1� XÞ lnð1� XÞ� þ�chemXð1� XÞ.

Our total free energy without ehom and the excess energy term (�chemXð1� XÞ) is

identical to the model of Grönhagen and Ågren [8].
With regard to the misfit strain tensor "mij near a grain boundary, the elastic strain

is relaxed when a solute atom approaches to a grain boundary due to its relatively

disordered structure. Therefore, we model the strain relaxation by employing the

position (or grain structure)-dependent mismatch as the following:

"mij ð~rÞ ¼ "
m,b
ij ’ð~rÞ, ð9Þ
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where ’ð~rÞ is an interpolation function which is 1 inside grains and 0 at the center of a

grain boundary and its explicit form is

’ð~rÞ ¼ �
�� �min

�max � �min

� �2

þ2
�� �min

�max � �min

� �
ð10Þ

where � ¼
P

g �
2
g, �max is the maximum value of � which corresponds to the value

inside the bulk, and �min is the minimum value of ’ which corresponds to the value at

the center of a grain boundary. "m,b
ij is the misfit strain tensor inside the bulk. We

assume dilatational strain tensor "c�ij for "m,b
ij where �ij is the Kronecker-delta

function, "c is the composition expansion coefficient of lattice parameter defined as
1
a0
ðdadXÞ, and a0 is the lattice parameter of the reference homogeneous solid solution of

overall composition X0. The strain is assumed to be fully relaxed when the solute

atom comes to the center of the grain boundary. Taking into account the position-

dependent mismatch, we rewrite ehom using Equation (9),

ehom ¼
1

2
Cijkl"

m,b
ij "

m,b
kl � hL

bð~nÞi~n

h i
’ð~rÞ2Xð1� XÞ, ð11Þ

where hLbð~nÞi~n is the average of L
bð~nÞ over all the directions of ~n with Lbð~nÞ ¼ ni�

0,b
ij

�jk�
0,b
kl nl, �

0,b
ij ¼ Cijkl"

m,b
kl , ��1jk ¼ Cjilkninl, and ni is the unit wave vector in Fourier

space. It should be noted that the prefactor 1
2½Cijkl"

m,b
ij "

m,b
kl � hL

bð~nÞi~n� in Equation (11)

includes the elastic properties of a grain interior only, and the interpolation function

’ð~rÞ is responsible for the relatively disordered grain boundary structure resulting in

the misfit strain relaxation near a generic grain boundary in our model. The possible

variations of elastic modulus or crystallographic symmetry within the grain

boundary arising from the relatively disordered grain boundary structure were not

addressed in the model. One remarkable thing is that the prefactor is independent of

grain orientation even if each grain has anisotropic elastic modulus. Since "m,b
ij is

a dilatational tensor, the first term Cijkl"
m,b
ij "

m,b
kl in the bracket is invariant with

Figure 1. (colour online) Profiles of Lbð~nÞ of (a) a reference grain and (b) rotated grain with
respect to the reference grain in ky–kz planes.

1472 T.W. Heo et al.
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grain rotation. In addition, the second term hLbð~nÞi~n is a scalar quantity where all

directions are equally considered. Figure 1 shows an example of the Lbð~nÞ profiles in
k-space for grains of different crystallographic orientations. If we average Lbð~nÞ over
all the directions, the values are the same since the profiles are just mutually rotated.

Therefore, all the grains have the same values of the prefactor for different grain

orientations, which means that the elastic modulus of a reference grain can be used

for the computations of prefactors of all other grains.
The term ehom is the elastic strain energy of a homogeneous solid solution.

However, compositional distribution in a solid solution is generally inhomogeneous.

The elastic strain energy stemming from the compositional inhomogeneity of the

solid solution is the coherency strain energy (ecoh),

ecoh ¼
1

2
Cijkl"

el
ij "

el
kl

¼
1

2
Cijklð �"ij þ �"ij � "

�
ijÞð �"kl þ �"kl � "

�
klÞ,

ð12Þ

where "elij is the elastic strain tensor which is equal to ð �"ij þ �"ij � "
�
ijÞ, �"ij is the

homogeneous strain tensor, �"ij is the heterogeneous strain tensor, and "�ij is the

eigenstrain tensor. For an elastically anisotropic and inhomogeneous polycrystal,

the position-dependent elastic modulus is modeled as the following [18,19,39]:

Cijklð~rÞ ¼
X
g

�2ga
g
ima

g
jna

g
koa

g
lpC

ref
mnop, ð13Þ

where �g is the grain order parameter, agij are the components of an axis

transformation matrix representing the rotation from the coordinate system defined

on a given grain g to the global reference coordinate system, and Cref
mnop on the right-

hand side is the elastic modulus in the coordinate system defined on the given grain

and Cref
mnop of all the grains are same.

The eigenstrain due to the compositional inhomogeneity is defined by

"�ijð~rÞ ¼ "
m
ij ðXð~rÞ � X0Þ, ð14Þ

where "mij is the misfit strain tensor, and X0 is the overall composition of the

solid solution. To represent the structural inhomogeneity of a polycrystal, we also

employ the position (or grain structure)-dependent mismatch ("mij ð~rÞ) modeled in

Equation (9).
The homogeneous strain �"ij represents the macroscopic shape change of a system

and is defined such that Z
V

�"ijð~rÞdV ¼ 0: ð15Þ

When a system is constrained under a constant applied strain ("aij), the homoge-

neous strain is simply equal to the applied strain, i.e. �"ij ¼ "
a
ij. On the other hand,
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if the boundaries are allowed to relax, the homogeneous strain in an elastically
inhomogeneous polycrystal is computed by [18,19]

�"ij ¼ hSijkli �
a
kl þ h�

0
kli � h��kli

� �
, ð16Þ

where hSijkli ¼ hCijkli
�1, hCijkli ¼ ð1=VÞ

R
V Cijklð~rÞdV, �

a
ij is an applied stress, h�0iji ¼

ð1=VÞ
R
V Cijklð~rÞ"

0
klð~rÞdV, and h��iji ¼ ð1=VÞ

R
V Cijklð~rÞ�"klð~rÞdV.

The heterogeneous strain can be expressed by the elastic displacement uið~rÞ
following Khachaturyan [2]:

�"ijð~rÞ ¼
1

2

@ui
@rj
þ
@uj
@ri

� �
, ð17Þ

To compute the heterogeneous strain field, we solve the following mechanical
equilibrium equation since the mechanical equilibrium is established much faster
than the diffusional processes:

rj�ij ¼ rj Cijklð~rÞð �"kl þ �"klð~rÞ � "
�
klð~rÞÞ

� �
¼ 0, ð18Þ

where �ij is the local elastic stress. In order to solve the mechanical equilibrium
equation with the spatially inhomogeneous elasticity in polycrystals, we employ the
Fourier-spectral iterative-perturbation scheme [16,17]. To apply the method, the
position-dependent elastic modulus (Equation (13)) is divided into a constant
homogeneous part Chom

ijkl (or Chom
ij ) and a position-dependent inhomogeneous

perturbation part Cinhom
ijkl ð~rÞ (or C

inhom
ij ð~rÞ), i.e.

Cijklð~rÞ ¼ Chom
ijkl þ

X
g

�2ga
g
ima

g
jna

g
koa

g
lpC

ref
mnop � Chom

ijkl

 !
¼ Chom

ijkl þ Cinhom
ijkl ð~rÞ, ð19Þ

where Cinhom
ijkl ð~rÞ is ð

P
g �

2
ga

g
ima

g
jna

g
koa

g
lpC

ref
mnop � Chom

ijkl Þ. The details of the general
procedure are discussed in [18,19]. For better efficiency, we additionally employed
the Voigt notation scheme to solve the mechanical equilibrium equation. The
procedure is as follows:

(1) Zeroth-order iteration: The elastic modulus is assumed to be homogeneous
and solve the mechanical equilibrium equation to obtain the zeroth-order
approximation of the elastic displacements. The equations in the Voigt
notation are

~u01 ¼ �i½�1ð ~�
0
1kx þ ~�06ky þ ~�05kzÞ þ�6ð ~�

0
6kx þ ~�02ky þ ~�04kzÞ

þ�5ð ~�
0
5kx þ ~�04ky þ ~�03kzÞ�,

~u02 ¼ �i½�6ð ~�
0
1kx þ ~�06ky þ ~�05kzÞ þ�2ð ~�

0
6kx þ ~�02ky þ ~�04kzÞ

þ�4ð ~�
0
5kx þ ~�04ky þ ~�03kzÞ�,

~u03 ¼ �i½�5ð ~�
0
1kx þ ~�06ky þ ~�05kzÞ þ�4ð ~�

0
6kx þ ~�02ky þ ~�04kzÞ

þ�3ð ~�
0
5kx þ ~�04ky þ ~�03kzÞ�,

ð20Þ

where �0i ¼ Chom
ij "0j , ��1ik ¼ Chom

ijkl kjkl (�ik is reduced to �i), i ¼
ffiffiffiffiffiffiffi
�1
p

, ~k ¼ ðkx, ky, kzÞ
is the reciprocal lattice vector, the tilde (�) represents the Fourier transform.
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(2) Higher-order iteration: The (n� 1)th-order elastic solution is used to obtain

the nth-order elastic displacements by solving

~un1 ¼ �i½�1ð ~Tn�1
1 kx þ ~Tn�1

6 ky þ ~Tn�1
5 kzÞ þ�6ð ~Tn�1

6 kx þ ~Tn�1
2 ky þ ~Tn�1

4 kzÞ

þ�5ð ~Tn�1
5 kx þ ~Tn�1

4 ky þ ~Tn�1
3 kzÞ�

~un2 ¼ �i½�6ð ~Tn�1
1 kx þ ~Tn�1

6 ky þ ~Tn�1
5 kzÞ þ�2ð ~Tn�1

6 kx þ ~Tn�1
2 ky þ ~Tn�1

4 kzÞ

þ�4ð ~Tn�1
5 kx þ ~Tn�1

4 ky þ ~Tn�1
3 kzÞ�

~un3 ¼ �i½�5ð ~Tn�1
1 kx þ ~Tn�1

6 ky þ ~Tn�1
5 kzÞ þ�4ð ~Tn�1

6 kx þ ~Tn�1
2 ky þ ~Tn�1

4 kzÞ

þ�3ð ~Tn�1
5 kx þ ~Tn�1

4 ky þ ~Tn�1
3 kzÞ�,

ð21Þ

Where Tn�1
i ¼ Ctotal

ij ð"
0
j � �"n�1j Þ � Cinhom

ij �"n�1j . The number of iterations is controlled

by the tolerance. In this work, the iterations were continuously performed until the

value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
v½ðu

nþ1
1 � un1Þ

2
þ ðunþ12 � un2Þ

2
þ ðunþ13 � un3Þ

2
�dV

q
became smaller than

1:0� 10�4.

2.2. Strain energy contribution to thermodynamics of solid solutions

Elastic strain energy contributions in an isotropic solid solutions were discussed in

[11]. Let us consider the elastic strain energy of an elastically anisotropic solid

solution in a single crystal. Ignoring the macroscopic deformation of the entire

system ( �"ij¼ 0), the expression of coherency elastic strain energy Ecoh of the entire

system in Fourier space is given by [2]

Ecoh ¼
1

2

Z
d3 ~k

ð2�Þ3
Bð~nÞ � ~Xð ~kÞ

			 			2, ð22Þ

where ~k is the wave vector in Fourier space, � ~Xð ~kÞ is the Fourier transform of

�Xð~rÞ ¼ X� X0, and Bð~nÞ ¼ Cijkl"
m
ij "

m
kl � ni�

0
ij�jk�

0
klnl ¼ Cijkl"

m
ij "

m
kl � Lð~nÞ. The total

strain energy of the system is the sum of Ehom and Ecoh,

Eaniso
total ¼ Ehom þ Ecoh

¼
1

2

Z
V

½Cijkl"
m
ij "

m
kl � hLð~nÞi~n�Xð1� XÞdV

þ
1

2

Z
d3k

ð2�Þ3
Cijkl"

m
ij "

m
kl � Lð~nÞ

h i
� ~Xð ~kÞ
			 			2:

ð23Þ

The second term in Equation (23) can be split into two parts:

1

2

Z
d3k

ð2�Þ3
Cijkl"

m
ij "

m
kl � Lð~nÞ

h i
� ~Xð ~kÞ
			 			2 ¼ 1

2

Z
d3k

ð2�Þ3
Cijkl"

m
ij "

m
kl � hLð~nÞi~n

h i
� ~Xð ~kÞ
			 			2

þ
1

2

Z
d3k

ð2�Þ3
hLð~nÞi~n � Lð~nÞ
� �

� ~Xð ~kÞ
			 			2,

ð24Þ

where the first term of the right-hand side is the orientation-independent part and the

second term of the right-hand side is the orientation-dependent part of the coherency
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strain energy. Applying the Parseval’s theorem to the orientation-independent part

and adding to ehom, it produces the following:

1

2

Z
V

Cijkl"
m
ij "

m
kl � hLð~nÞi~n

h i
Xð1� XÞdVþ

1

2

Z
d3k

ð2�Þ3
Cijkl"

m
ij "

m
kl � hLð~nÞi~n

h i
� ~Xð ~kÞ
			 			2

¼
1

2

Z
V

Cijkl"
m
ij "

m
kl � hLð~nÞi~n

h i
Xð1� XÞdVþ

1

2

Z
V

Cijkl"
m
ij "

m
kl � hLð~nÞi~n

h i
ðX� X0Þ

2dV

¼
1

2
V Cijkl"

m
ij "

m
kl � hLð~nÞi~n

h i
X0ð1� X0Þ:

ð25Þ

Thus, the total elastic strain energy of the elastically anisotropic system can be

written as

Eaniso
total ¼

1

2
V Cijkl"

m
ij "

m
kl � hLð~nÞi~n

h i
X0ð1� X0Þ

þ
1

2

Z
d3k

ð2�Þ3
hLð~nÞi~n � Lð~nÞ
� �

� ~Xð ~kÞ
			 			2: ð26Þ

which is consistent with Khachaturyan’s expression of the elastic strain energy of a

solid solution [2]. For an elastically isotropic solution, the second term of Equation

(26) becomes zero since Lð~nÞ is equal to hLð~nÞi~n and the first term reduces to

2�
1þ 	

1� 	

� �
"2cX0ð1� X0Þ ðin three dimensionsÞ

or
�

1� 	


 �
"2cX0ð1� X0Þ, ðin two dimensionsÞ

ð27Þ

where � is the shear modulus and 	 is the Poisson’s ratio. This means that the elastic

strain energy of elastically isotropic solid solution is not affected by the composi-

tional distribution (Crum theorem). Based on the above discussion, we could confirm

that both ehom and ecoh are essential components for the elastic strain energy of a

solid solution.
The elastic strain energy significantly contributes to the thermodynamics of

spinodal boundaries. As Khachaturyan discussed in [2], only the orientation-

dependent part of the coherency strain energy affects the coherent spinodal

boundaries with respect to the chemical spinodal boundaries since the homogeneous

part of free energy should include the orientation-independent part of coherency

strain energy. Our model correctly describes the spinodal boundary. The local free

energy density can be expressed as

f ¼ fchem þ ehom þ eindepcoh


 �
þ edepcoh: ð28Þ

The second derivative of (ehom þ eindepcoh ) is equal to zero, i.e.

@2

@X2

1

2
Cijkl"

m
ij "

m
kl � hLð~nÞi~n

h i
Xð1� XÞ þ

1

2
Cijkl"

m
ij "

m
kl � hLð~nÞi~n

h i
ðX� X0Þ

2

� �
¼ 0:

ð29Þ
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Therefore, the difference in spinodal regimes between chemical spinodal and
coherent spinodal is also determined by the only second derivative of (fchem þ edepcoh),
while the incoherent spinodal regime is determined by the second derivative of
(fchem þ ehom), which is the incoherent free energy. In the case of an isotropic elastic
solid solution, the coherent spinodal boundaries are the same as chemical spinodal
since edepcoh becomes zero, and the incoherent spinodal regime is wider than coherent or
chemical spinodal regimes. Moreover, the consolute temperature of the incoherent
spinodal decomposition is higher than that of chemical or coherent spinodal
decomposition by �

Rð
1þ	
1�	Þ"

2
c . A schematic illustration of the spinodal regime is shown

in Figure 2 Thus, we could conclude that the elastic strain energy terms defined in
our model correctly describe the diffusional processes.

2.3. Diffusion kinetics

The temporal evolution of the compositional fields X is governed by the Cahn–
Hilliard equation [43]:

@Xð~r, tÞ

@t
¼ r �Mcr

�F

�Xð~r, tÞ

� �
, ð30Þ

where Mc is the interdiffusion mobility, and �F
�X

� �
is the variational derivative of the

free energy functional with respect to composition. Substituting the total free energy
F (Equation (1)) with the expressions in Equation (8) into Equation (30), we obtain
the following kinetic equations:

@X

@t
¼ r �Mcr

@fchem
@X
�m!gþ

@ehom
@X
þ
@ecoh
@X
� �cr

2X

� �
, ð31Þ

Figure 2. (colour online) Schematic diagram of the spinodal regimes.
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The derivatives of ehom and ecoh with respect to X in Equation (31) are derived
using Equations (11) and (12):

@ehom
@X
¼

1

2
Cijkl"

m,b
ij "

m,b
kl � hL

bð~nÞi~n

h i
’ð~rÞ2ð1� 2XÞ,

@ecoh
@X
¼ �Cijklð �"ij þ �"ij � "

�
ijÞ

@"�kl
@X

� �
¼ �Cijkl"

el
ij "c�kl’ð~rÞ,

ð32Þ

We employed the variable interdiffusion mobility for Mc in Equation (30) which
is given by

Mc ¼M0
cXð1� XÞ, ð33Þ

where M0
c is the prefactor which is equal to D/RT, D is the interdiffusion coefficient,

R is the gas constant, and T is the temperature. To solve the Cahn–Hilliard equation
with the composition-dependent diffusion mobility, the numerical technique for the
variable mobility in [44] is employed. The Cahn–Hilliard equation (Equation (30)) is
solved by the semi-implicit Fourier-spectral method [44,45].

3. Simulation results and discussions

3.1. Preparation of grain structures and numerical input parameters

Even though the model is applicable to simultaneous grain growth and composi-
tional evolutions, we will mainly discuss compositional evolution on a static grain
structure for simplicity. To generate grain structures described by multiple grain
order parameters, we employ the following local free energy density functional for
gð�1, �2, . . . , �gÞ in Equation (1) based on the model in [46] in the present model:

gð�1, �2, . . . , �gÞ ¼ 0:25þ
X
g

�
1

2
�2g þ

1

4
�4g

� �
þ 


X
g

X
g04 g

�2g�
2
g0 , ð34Þ

where 
 is the phenomenological parameter for the interactions among grain order
parameters. A constant 0.25 in Equation (34) is employed to make the value of the
function g equal to 0 inside the bulk to describe zero interaction potential (�m!g in
Equation (7)) inside the grain for convenience, which does not affect the kinetics of
the grain structure evolution. The evolution of the non-conserved order parameters
�g is governed by the Allen–Cahn relaxation equation [47]:

@�gð~r, tÞ

@t
¼ �L

�F

��gð~r, tÞ

� �
, ð35Þ

where L is the kinetic coefficient related to grain boundary mobility, t is time,
and ð �F��gÞ is the variation of the free energy function with respect to the grain
order parameter fields. The equations are solved by semi-implicit Fourier-spectral
method [45].

The kinetic equations in Equations (31) and (35) were solved in dimensionless
forms. The parameters were normalized by Dx� ¼ Dx

l , Dt
� ¼ LEDt, !� ¼ !

E, �
� ¼

�
E,

f� ¼ f
E, C�ij ¼

Cij

E , �
� ¼ �

El2
, and M0�

c ¼
M0

c

Ll2
where E is the characteristic energy

which was chosen to be 109 J=m3 and l is the characteristic length which is taken
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to be 2� 10�9 m. For a reference grain, we used the elastic constants of 
 phase in
Ni–Al alloy system used in [31] which were estimated from [48,49]. The normalized
elastic constants in Voigt notation were Cref�

11 ¼ 195.8, Cref�

12 ¼ 144.0, and Cref�

44 ¼ 89.6.
Each grain in a polycrystal is elastically anisotropic since the Zener anisotropy factor
AZ (¼ 2Cref�

44 =ðC
ref�

11 � Cref�

12 Þ) is equal to 3.46. The composition expansion coefficient
"c is chosen to be 0.04. The dimensionless gradient energy coefficients ��c and ��o are
set to be 0.25. The interaction parameter m was taken to be 0.5, and the normalized
height !� was chosen to be 1.14. The terms associated with the normalized chemical
free energy such as ��

�

, ��
�

h , and ��chem were set to be 1.0, 1.0, and 2.0, respectively.
The prefactor M0�

c of interdiffusion mobility in dimensionless unit in Equation (33)
was chosen as 0.118. The dimensionless grid size Dx� was 0.5, and time step Dt� for
integration was 0.1. All the simulations were conducted with the periodic boundary
condition.

Examples of generated grain structures in two (2D) and three dimensions (3D)
are shown in Figure 3a and c. For these random grain structures, circular (2D) or
spherical (3D) grains were randomly distributed in the system at the initial stage and
the system was relaxed by solving Equation (35). Once the grain structure is

Figure 3. Examples of phase-field simulations. (a) Two-dimesional (2D) grain structure,
(b) diffusional process in the 2D grain structure with diverse overall compositions, (c) three-
dimensional (3D) grain structure, (d) diffusional process in the 3D grain structure with diverse
overall compositions, and (e) the temporal evolution of a composition in the 3D grain
structure when X0¼ 0.35.
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prepared, the local free energy density g in Equation (7) is computed and fixed for
the composition–grain structure interaction term (�m!gX). On the prepared static
grain structures, we perform the computer simulations of the diffusion processes
taking into account the chemical and elastic interactions between solute and grain
boundaries. Some examples of the simulations with different overall compositions
are shown in Figure 3b for 2D and Figure 3d for 3D. To nucleate the precipitates, the
Gaussian random fluctuations were incorporated to the compositional field at the
early stage. Figure 3e shows the temporal evolution of compositional field in a 3D
grain structure, and the solute–grain boundary interaction, i.e. grain boundary
segregation, is clearly shown at the early stage of the simulation.

3.2. Precipitate–precipitate interaction across a grain boundary

The elastic stress field generated by a coherent precipitate in one grain may influence
the precipitations in other grains since the elastic interactions are long-range.
To investigate the interactions between precipitates in different grains, we designed a
simple bicrystal as shown in Figure 4a. We labeled the left-hand side grain as Grain I
and the right-hand side grain as Grain II. We can vary the misorientation between
two adjoining grains as well as the locations of precipitates inside the grains. As an
example, the grain orientation of Grain I is fixed as 0�, while Grain II is oriented at
an angle of 60� with respect to Grain I. The distributions of the elastic constants
(C�11, C

�
12, and C�44) with respect to the global reference coordinate system (x-y frame)

are plotted across a grain boundary in Figure 4b.
The elastic stress field generated by a coherent precipitate in an elastically

anisotropic solid is strongly orientation-dependent. Figure 5a shows contour plots of
the computed spatial distributions of the elastic stress fields (�xx, �xy, �yy) generated
from a single coherent precipitate in a bicrystal. For comparison, the stress fields in a
single crystal are also plotted in Figure 5b. In both cases, the stress fields from the
precipitate propagate over a long range. However, as one can clearly see, the stress

Figure 4. (colour online) (a) Simulation setup in a bicrystal generated by a phase-field
simulation, and (b) profiles of elastic constants (C�11, C

�
12, C

�
44) with respect to (x–y) coordinate

system across a grain boundary when �¼ 60�.
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fields, especially, �xx and �yy, abruptly change across the grain boundary. It means
that precipitates in Grain II might be affected by the distorted elastic stress fields,
and the effects would be more significant if the precipitates are located near the grain
boundary.

To observe the precipitation reaction under the stress fields near a grain
boundary, we initially introduced two circular precipitates of R¼ 20Dx� and monitor
the temporal evolution of the precipitate morphology. One was embedded in Grain I
at a fixed location, while the other was embedded in Grain II at several different
distances to the grain boundary, as shown in Figure 6, to observe the influence of the
different levels of stress field on the precipitate. To reduce the overlap of the elastic
field due to the periodic boundary condition, we employ a relatively large system
(512Dx*� 512Dx* grids). The solute composition in the matrix was taken to be
0.046, which is close to one of the equilibrium compositions (Xmatrix

eq ¼ 0:037 and
Xprecipitate

eq ¼ 0:963).

Figure 5. (colour online) Contour plots of elastic stress fields (�xx, �xy, �yy) generated from a
single coherent precipitate (a) in a bicrystal (red dashed line represents a grain boundary) and
(b) a single crystal.

Figure 6. (colour online) Morphology of precipitates in a bicrystal. A precipitate in Grain I is
located at a fixed position, while a precipitate in Grain II is placed at several different
distances to a grain boundary. A yellow dashed line represents the location of a grain
boundary.
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Figure 7 shows the zoomed images of Figure 6 in order to clearly capture the

morphology of precipitates near the grain boundary for several precipitate locations

in Grain II. First of all, the morphology of the precipitate is cubic with rounded

corners, as shown in Figure 7a. The precipitate embedded in Grain II is rotated by

60� with respect to the precipitate embedded in Grain I. The precipitates in the

configuration of Figure 7a do not seem to significantly affect each other. As the

precipitate in Grain II becomes closer to the grain boundary (see Figure 7b–e),

the interesting features are captured. The morphology of the precipitate in Grain II

deviates from the perfect cuboidal shape (see Figure 7e). This means that the

diffusion process associated with the precipitate in Grain II is interfered by a bias.
Diffusion kinetics is generally affected by the elastic stress field. The relationship

between the diffusion flux and the elastic stress field is given by [1]:

J ¼ cMðF� XiD�rPÞ, ð36Þ

where J is the flux, c is the total concentration, M is the diffusion mobility, F is the

driving force for diffusion except the local pressure effect, Xi is the mole fraction of

species i, D� is the pure dilation during the atomic jump, and P is the local pressure

defined by ½�ð�xx þ �yyÞ=2� in two dimensions and ½�ð�xx þ �yy þ �zzÞ=3� in three

dimensions. For convenience, we use the negative local pressure (�P ¼

ð�xx þ �yyÞ=2). By the definition, the positive value of �P represents the tensile

local pressure and the negative value represents the compressive local pressure.

Consequently, the diffusion kinetics can be significantly affected by the local pressure

fields. Thus, we investigated the local pressure distribution near precipitates in order

Figure 7. (colour online) Morphology of precipitates near a grain boundary for the cases in
Figure 6 (zoomed images of Figure 6). The yellow dashed line represents the location of a
grain boundary.
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to explore the origin of the deformed shape of the precipitate. Figure 8a shows

contour plot of �P (¼ ð�xx þ �yyÞ=2) distribution which arises due to a single

coherent precipitate in Grain I. In the external area of the precipitate, the local
pressure along the diagonal direction of the precipitate is more compressive. On the

other hand, the local pressure along the normal direction to a flat interface of the
precipitate is more tensile. The local pressure field elongates to the grain boundary,

and it is refracted when it passes though the grain boundary in the same way as the
stress fields. As a result, the irregular tensile regime next to the grain boundary

is formed in Grain II. In Figure 8b, the guidelines of the coherent precipitates of

Figure 7e, where the precipitate in Grain II is closest to the grain boundary, are
shown in the enlarged contour plot in order to observe the effect of the local

pressure. Most deviation of the morphology (from the perfect cuboidal shape) occurs
near the tensile region, i.e. the left hand side corner of the precipitate in Grain II

tends to be dragged toward the more tensile regime. Figure 8c shows the distribution
of �P when the other coherent precipitate is also placed at Grain II. Even though the

local pressure field displays the more distorted distribution due to the superposition

of local pressure fields from both coherent precipitates, it clearly shows the distortion
of the precipitate shape in Grain II toward the tensile regime. It should be mentioned

that the shape of the precipitate in Grain I is also distorted since the local pressure
distribution around the precipitate in Grain I is influenced by the stress field

Figure 8. (colour online) (a) Contour plot of negative local pressure (�P) generated from a
single coherent precipitate in Grain I in a bicrystal, (b) magnified plot of �P with the
guidelines of the precipitates in Figure 7e, and (c) contour plot of �P generated from two
coherent precipitates in Grain I and II with the guidelines of the precipitates in Figure 7e.
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generated from the precipitate in Grain II, which results in strongly asymmetric local
pressure distribution near the precipitate in Grain I.

We also conducted simulations with different crystallographic orientations of
Grain II, and similar behavior is observed, as shown in Figure 9. Morphological
shapes of two precipitates are mutually influenced by each other. This can be one of
reasons for the irregular morphology of precipitates near or at grain boundaries
which have significantly important implications to the mechanical properties.

3.3. Precipitate–grain boundary segregation interaction

The effects of elastic strain energy on grain boundary segregation profiles have been
discussed in [11] for the case of isotropic elastic modulus. In this section, we discuss
the effects of elastic stress generated by the precipitates within grains on solute
segregation at grain boundaries in elastically anisotropic systems.

It is easily expected that the elastic stress field or local pressure profile along a
grain boundary stemming from the multiple coherent precipitates in adjacent grains
is strongly inhomogeneous. In addition, it would depend on the spatial configuration
of the precipitates. Figure 10b shows the negative local pressure (�P) profiles along
the grain boundary (shaded region in Figure 10a) in the cases of different grain
orientations of Grain II. Corresponding solute composition profiles along the grain
boundary are shown in Figure 10c. In all cases, the solute composition at the locally
maximum compressive region (shaded in red) is relatively low, while the composition
at the relatively tensile (locally minimum compressive) regions (shaded in blue) tends
to be at local maximum. The solute atoms do not prefer compressive stress regions
since the solute lattice parameter expansion coefficient is dilatational and positive.
As a result, the composition profile along the grain boundary is non-uniform
depending on the configurations of coherent precipitates inside grains. Similar
behaviors of solute segregation/depletion near a dislocation were discussed in [50].

Figure 9. (colour online) Morphology of precipitates near a grain boundary for the cases of
different crystallographic orientations of Grain II. The yellow dashed line represents the
location of a grain boundary.
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Finally, the non-uniform distribution of solute atoms at a grain boundary can
supply the inhomogeneous distribution of candidate sites for secondary (barrier-less)
nucleation at the grain boundary. We performed the simulations at higher matrix
composition (Xm¼ 0.12), i.e. a supersaturated system, in the presence of primary
coherent precipitates inside grains. We monitored the secondary nucleation process
at a grain boundary. Figure 11a shows the temporal evolution of the process. New
precipitates are nucleated along the grain boundary region within dashed line in the
figure. Depending on the spatial configuration of primary coherent precipitates, the
secondary nucleation events along the grain boundary occur at different locations, as
shown in Figure 11b. For better comparison, the composition profiles along the
grain boundary are plotted in Figure 11c. The figure clearly shows the non-uniform
distribution of the secondary nucleation. This phenomenon can happen in realistic
materials systems. For instance, upon the continuous cooling, the nucleation of the
secondary 
 0 precipitates occurs in the presence of the pre-existing primary coherent

Figure 10. (colour online) (a) Scanned regime for the profiles of negative local pressure (�P)
and solute composition. (b) Negative local pressure (�P) profiles along the grain boundary in
the cases of different grain orientations of Grain II, and (c) corresponding solute composition
profiles along the grain boundary.
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 0 phase in Ni alloys, which results in the bimodal distribution of 
 0 precipitates [51].
Our simulation results indicate that the primary 
 0 precipitates inside grains can
affect the spatial distribution of grain boundary nucleated secondary 
 0 precipitates.
In addition, the grain boundary precipitate distribution may affect mechanical
behavior, e.g. creep rate [52].

4. Summary

We have incorporated the elastic strain energy contribution in the phase-field model
of grain boundary segregation in an elastically anisotropic polycrystalline solid
solution. The elastic strain energy of a solid solution was obtained by solving the

Figure 11. (colour online) (a) Snapshots of the secondary nucleation process of precipitates at
a grain boundary. (b) Secondary nucleation of precipitates at a grain boundary with different
grain orientations of Grain II, and (c) composition profiles along the grain boundary.
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mechanical equilibrium equation using the iterative-perturbation Fourier spectral
method. We investigated the elastic interactions between precipitates in different
grains, and between precipitates and grain boundary segregation. The elastic stress
fields from a coherent precipitate inside grain propagate across a grain boundary
which may affect the shape of precipitates in other grains near the grain boundary.
Precipitates near a grain boundary generate non-uniform stress field or local pressure
along a grain boundary, leading to inhomogeneous grain boundary segregation
which in turn may induce non-uniform nucleation of secondary precipitates along a
grain boundary. We are currently applying this model to a number of polycrystalline
materials systems involving the diffusional processes, such as Ti alloys, Ni alloys, Zr
alloys, etc.
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Appendix. Calculation of hLð~nÞi~n
By definition, hLð~nÞi~n is the average of Lð~nÞ over all the directions of ~n where
Lð~nÞ ¼ ni�

0
ij�jk�

0
klnl, �

0
ij ¼ Cijkl"

m
kl, ��1jk ¼ Cjilkninl, and ni is the unit wave vector in Fourier

space. The mathematical expression of hLð~nÞi~n is given by [2]

hLð~nÞi~n ¼
1

4�

I
Lð~nÞd�, ðA1Þ
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where d� is the solid angle element. Since 1

ð
4�
3 r3

k
Þ

R rk
0 4�k2dk ¼ 1, Equation (A1) becomes

hLð~nÞi~n ¼
1

4�
3 r3k
� � Z rk

0

4�k2dk �
1

4�

I
Lð~nÞd�, ðA2Þ

where rk is an arbitrary radius of a sphere in k-space. Applying the definition of the solid angle
(d� ¼ sin �d�d�), we obtain

hLð~nÞi~n ¼
1

4�
3 r3k
� � Z 2�

0

Z �

0

Z rk

0

Lð~nÞk2 sin �dkd�d� ¼
1

4�
3 r3k
� � Z Z Z

sphere
r¼rk

Lð~nÞd3k: ðA3Þ

Therefore, hLð~nÞi~n becomes the spherical average. In [2], the Debye cutoff radius (kd)
defined by the relation 4�

3 k
3
d ¼

ð2�Þ3

v0
where ð2�Þ

3

v0
is the volume of the first Brillouin zone was

chosen for the radius of the sphere, and hLð~nÞi~n was calculated by

hLð~nÞi~n ¼
1

4�
3 k3d
� � Z Z Z

sphere
r¼kd

Lð~nÞd3k ¼
1

ð2�Þ3

v0

h i Z Z Z
sphere
r¼kd

LðnÞd3k: ðA4Þ

It should be noted that we can also take any rk within the first Brillouin zone. Thus, we can
take the integration over the sphere whose radius is equal to �=Dx for the spherical average.
Hence, hLð~nÞi~n can be computed as

hLð~nÞi~n ¼
1

4�
3 ð

�
DxÞ

3
� � Z Z Z

sphere
r¼�=Dx

Lð~nÞd3k ¼
1

Vk

Z Z Z
sphere
r¼�=Dx

LðnÞd3k: ðA5Þ

in the numerical calculations where Vk represents the volume of sphere whose radius is equal
to �=Dx.
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